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Abstract-The elastic-plastic line-spring finite element of Parks and White (1982), as implemented
in the ABAQUS finite element code (l988b), is modified in several ways for a better evaluation of
crack-tip deformation parameters such as K], J, crack-tip opening displacement and crack-tip stress
triaxiality, the last of which is inferred or measured by the so-called T-stress and Q-stress parameters.
An effective crack length formulation is introduced to capture the nonlinearity due to contained
plane strain crack-tip plastic deformation, the size and orientation of which are known to be sensitive
to the sign and magnitude (relative to yield strength) of the T-stress. More accurate yield surfaces,
obtained from finite element limit analyses of plane strain single-edge cracked specimens, are
employed to more sharply define the behavior of the line-spring model in the fully plastic region.
More accurate relationships between incremental plastic crack-tip opening displacement and
incremental load point displacement/rotation are also incorporated into the model for shallow crack
configurations under fully plastic loading. The modified line-spring model is then applied to surface
cracked plate problems having a wide range ofcrack-tip constraints, and the feasibility ofimplement­
ing J- T(Q) based two-parameter characterizations of elastic-plastic crack front fields via simplified
line-spring elements is examined.

I. INTRODUCTION

The analysis of a part-through surface crack in a plate or a shell is an important problem
in engineering fracture mechanics. The geometry ofthe surface crack leads to an intrinsically
three-dimensional (3-D) problem having a strong interaction between the crack front field
and the bounding surface of the body. Due to the difficulties in constructing closed-form
solutions, the majority of existing solutions rely heavily on numerical techniques. Although
3-D finite element methods are available for the general elastic-plastic problems of the
surface crack, the enormous computer storage, extensive computational times, and large
amounts of data preparation and reduction associated with the geometric and parametric
complexities of the surface crack make the routine application of 3-D FEM currently
impractical. However, many of these problems can be solved with a simplified model called
the line-spring.

The line-spring model was introduced by Rice and Levy (1972) to effectively calculate
the stress intensity factors (K]) of part-through surface cracks in plate or shell structures.
The evaluation of the elastic T-stress in surface cracked plates using the line-spring finite
element, by Wang and Parks (1992), illustrated another important application of the model
to the study of two-parameter crack-tip characterization. The virtue of the line-spring
model is that it reduces complex 3-D problems to tractable "two-dimensional" plate/shell
problems.

The model was incorporated into singular integral equation formulations of isotropic
elastic plate or thin shell theory (Delale and Erdogan, 1981; Parks, 1981). For problems in
which structural models more general than thin elastic shell theory are required, the linear
elastic line-spring was implemented in a general finite element program (Parks et al., 1981).
The numerical results for K] from these elastic analyses were within a few percent of
accepted solutions along most of the surface crack front. The nonlinear elastic line-spring
model based on the deformation theory of plasticity (Kumar and German, 1985; Miyoshi
et al., 1986; Shawki et al., 1989) would be most appropriate for proportional loading cases.
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Parks (1981) noted, however, that the evolution of nonuniform inelastic response in line­
spring models of surface cracked plates often leads to rather nonproportional force/moment
trajectories. Moreover, the line-spring model is a promising potential tool for assessing
problems of substantial through-thickness penetration, e.g. the leak before break problem
(Lee and Parks, 1994), because it does not require any remeshing for simulation of crack
growth in the thickness direction. Consequently, an approach based on the incremental
theory of plasticity is likely to be more appropriate. Parks and White (1982) presented an
elastic-plastic model of the line-spring finite element using the incremental theory of
plasticity. Their model, as implemented in the ABAQUS finite element code (1988b), is
very accurate in the linear elastic region and generally gives a good estimate of non­
hardening limiting loads. Nonetheless, the accuracy of their line-spring model could be
improved in the elastic-plastic transition region and in the fully plastic hardening region.

Here, in a straightforward modification of the line-spring model of Parks and White
(1982), we introduce a new effective crack length formulation (Hauf et al., 1994) to capture
the deviation of load vs displacement curve from linearity in the contained yielding region,
thereby providing a smooth and realistic transition between linear elastic and fully plastic
regions. Model performance in the fully plastic region is enhanced by adopting accurate
tabulated yield surfaces of plane strain single-edge cracked (SEC) specimens (Lee and
Parks, 1993), and by calibrating the model's strain hardening factor on a more realistic
stress-strain curve. Finally, we compare the line-spring solutions with 3-D finite element
solutions, and investigate the feasibility of implementing l-T(Q) based two-parameter
characterization of elastic-plastic crack front fields (Betegon and Hancock, 1991; O'Dowd
and Shih, 1991, 1992; Wang, 1993) via simple line-spring modeling.

2. THE LINE-SPRING MODEL

Additional compliance is introduced into a plate or shell structure by the presence of a
part-through surface crack. The main feature of the line-spring model is that this additional
compliance is accounted for by a through-crack of length 2c in the shell, with a generalized
foundation connecting the two sides of the model through-crack. Consider a part-through
surface crack of total length 2c in a shell of thickness t, as illustrated schematically in Fig. 1.
The coordinate x measures the distance from the center line (x = 0) of the surface crack.

Fig. I. Cross section of a part-through surface crack with a length 2c and varying depth a(x) in a
shell of thickness t (above). Schematic illustration of line-spring model which converts the part­

through surface crack to the through-crack with a generalized foundation (below).
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The local depth of the surface crack is a(x), where 0 ~ a(x) ~ t for Ixl ~ c. In symmetrically
loaded structures, the generalized shell resultants transmitted by the foundation are a
membrane force N(x) and a bending moment M(x) per unit length. Kinematic variables
work-conjugate to the local force and moment are relative separation and rotation [15(x),
(;l(x)] of the model through-crack. The foundation in Fig. I has a compliance which varies
according to the local crack depth a(x) of the surface crack. The surface crack reduces to
the plane strain SEC specimen if 2c» t, and a(x) is essentially constant. With this limiting
case as a motivation, the compliance of the foundation at x is taken from the additional
cracked compliance of a plane strain SEC specimen having the same thickness t and crack
depth a(x) (Rice, 1972a; Rice and Levy, 1972). Because of this feature, the line-spring
model is generally more accurate for surface cracks having larger crack length to shell
thickness ratios (2c/t) and gradually changing crack depth profiles a(x).

The introduction of the additional compliance, lumped on the foundation along the
discontinuity line of the cut in a shell, converts the 3-D surface crack problem to a
generalized 2-D boundary value problem. When the combined shell and foundation model
subject to remote loading is solved, the incremental generalized displacements and forces
at the foundation are recovered. Finally, the crack front deformation parameter at position
x [as measured by Kj(x), J(x) and crack-tip opening displacement, CTOD(x), etc.] is
estimated as the same value which would occur in the plane strain SEC specimen of
thickness t and crack depth a(x) subject to the combined load histories [N(x), M(x)].

2.1. Effective crack length formulation
Renamed as Q, = N, Q2 = M; ql = 15, q2 = (;l, the generalized displacements and forces

are connected in the linear elastic region by the elastic compliance matrix Pi):

(1)

where the summation convention (from I to 2) on repeated indices is adopted. The elastic
compliance matrix Pi; is determined from the mode I stress intensity factor calibrations of
the SEC specimen using the energy/compliance relation (Rice, 1972b)

2 r"Pi} = H Jo FM, t)Fj(a, t) da (2)

-,---"-

where H = E/(1-v2
), E is Young's modulus and v is Poisson's ratio. The functions Fi(a, t)

(i = 1,2) contain the K,-calibrations of the SEC specimen subject to tension (FI ) and
bending (F2) ; that is, Kj(Qi; a, t) = F,(a, t)Qi by superposition. These calibration functions
are readily obtained from the handbook, for example, of Tada et al. (1985).

Rice (1972a) noted that the transition from linear elastic to fully plastic conditions in
the line-spring model might be smoothed by use of a plastically adjusted effective crack
length aeff, and Parks (1981) made limited use of such a construct. The line-spring of Parks
and White (1982), herein denoted the PW line-spring, did not include such smoothing.
Here, we introduce the effective crack length as a simple way to account for load/
displacement nonlinearity within the initial yield surface, <I>(Qi; a, t; Tv) < O. Here <I> is a
yield function in the generalized force space and Tv is the yield strength in shear, which is
related to the tensile yield strength by Ty = (J/j3 ~ccording to a von Mises yield criterion.
A work hardened surface <I>(Qi; a, t; To) = 0 based on the ligament-average shear flow
strength To(;;~ Ty) will be called the "yield surface", while the surface <I>(Qi; a, t; Ty) = 0
based on Ty is termed the "initial" yield surface. Although the yield function <I> = 0 is used
to characterize the fully plastic state, in general, it does not describe the nonlinearity
occurring at <I> < 0 due to contained yielding.

Local crack-tip plasticity increases the remote displacements beyond their elastically
calculated values, so that the effective compliance exceeds that of the purely elastic case. In
other words, when observed in the remote elastic field, the crack appears longer than its
physical size due to the occurrence of crack-tip plasticity (Irwin, 1958). The effective crack
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length is generally taken as the sum of the physical crack length a and a correction
proportional to the crack-tip plastic zone size. Crack-tip plastic zone size is more sensitive
to the sign and magnitude of T-stress than are other crack-tip parameters such as CTOD
(Rice, 1974). The stress field near the crack-tip in a linear elastic body under mode I loading
is described by the Williams (1957) eigen-expansion, the first two terms of which are

O"ij(r,e) = K, fl(O) +Tblib Ij'

y'2nr
(3)

Here x;(i = 1,2) are local Cartesian coordinates centered at the crack-tip, and the x 2­

direction is normal to the crack faces. Cylindrical coordinates (r,O) centered at the crack­
tip are r = JXT +x~ and 0 = tan-'(x2!Xl)' and the functions fi8) provide the angular
variation of the singular part of the respective stress components. (Through the context,
the crack-tip polar coordinate "8" is distinguished from the far field rotation "8" of the
SEC specimen.) The T-stress is a tensile or compressive stress acting parallel to the cracked
plane, and bij is the Kronecker delta.

With the effect of T-stress on plastic zone size included, the effective crack length can
be expressed in the form

[
K 1(Gerr,t)]2

aeff = a+f3p(r)
O"y

(4)

where a is the actual crack length, O"y is the tensile yield strength, and f3 is a dimensionless
parameter depending on the correction model and the strain hardening exponent of the
material (Hauf et al., 1994). The dimensionless function per), with argument r =Tjay, is
taken from Wang's (1991) work. For a power law hardening material with hardening
exponent n = 10, Wang (1991) obtained the plastic zone size at various values of r by
remotely applying the stress fields defined by (3) to a large semi-circular domain. In Fig. 2,
the ratio of the maximum plastic zone radius at any given r to the maximum plastic zone
radius at small scale yielding, R (r) =r;ax Ir!r~SY, is plotted on logarithmic scale against r,
where r~SY =r;axl r ~ o. Wang's circled data can be fitted with a fourth order polynomial as
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Fig. 2. Ratio of the maximum plastic zone radius at any given r to the maximum plastic zone radius
at r = 0, R (r) =' r;a'Ur~a'lr ~ 0, plotted on logarithmic scale against r. The ratio 0.15 R (r) is taken

as per) in egn (4).
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(5)

where fitting coefficients «('I, ('2, ('3, ('4) = (-0.539,0.375,0.236,0.974). With reference to
(4), we simply took per) = 0.15 R(r). Note that since r~SY ~ 0.15(Kd(Jy)2IT~o, K j in (4) is
calibrated with dell corresponding to the effective crack length evaluated at r = 0, that is,
the standard effective crack length,

(6)

Because aetT plays its role in the contained yielding region (<I> < 0) prior to gross work
hardening in the ligament, the tensile yield strength, rather than a work hardened flow
strength, is used in the correction.

In the standard formulation of plastically corrected effective crack length, K j itself
depends implicitly on the current loads and the effective crack length as

(7)

The corresponding effective value of the "elastic" i-integral is

(8)

Like Kj, T-stress is a function of geometry and loading conditions, and is proportional to
the applied load (Larsson and Carlsson, 1973). Analogously to the stress intensity factor
formulation, an effective value of T-stress in the elastic-plastic SEC specimen can be
estimated as

(9)

Here ti(uerr! t) are T-calibrators for the SEC specimen in tension and bending, and generalized
load measures QI = Qllt, Q2 = 6Q21t2 have dimensions of stress. Sham (1991) tabulated
the ti-functions of SEC specimens for essentially the entire range of al t (0.1 ::S; alt ::S; 0.9)
using second order weight functions. When alt --+ 0, both tl-functions are estimated as
t l=- 0.51 from a finite element result (Harlin and Willis, 1988). Supplementing this limiting
value to Sham's data, for the range of 0 ::S; alt::S; 0.8, we fitted tabulated data with a fourth
order polynomial function such that tl = L~:~ uk(alt)k, where (ab k = 0,4) are (-0.501,
-1.842, 14.48, -45.03,47.42) for t l in tension, and (~0.505, 0.906,3.637, -10.73, 14.08)
for t2 in bending. Note that as a! t --+ 0, t, --+ a(h and the fitted values of ao = - 0.50 I (tension)
and -0.505 (bending) are in good agreement with the results of Harlin and Willis (1988).
These fourth order polynomial functions are used for T-stress calibrations in our line­
spring model.

The total complementary strain energy of a cracked configuration, 0t, can be con­
sidered as the sum of that absent from the crack (One) and that due to the crack (OJ
(Rice et al., 1973); 0t = One +0e' With this decomposition, Hauf et al. (1994) derived an
expression for the cracked displacements in terms of the effective crack length as summarized
below. The additional cracked displacements of q, of the load point are given as

(10)

Further, by the definition of the i-integral,
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(11)

Introducing (8) into (11), and combining (10) and (11) provides

(12)

where it is understood that aeff (a, t, QJ from (4)-(9) depends functionally on the integration
variable a in (12). In practice, the integrals (12) are evaluated numerically. Thus, the
relation between cracked displacements and generalized forces in the contained yielding
region is obtained in an energetically consistent form, leading to a symmetric Jacobian
oQ;/oqj as summarized in Section Al of the Appendix.

2.2. Yield surfaces
The construction materials used for pressure vessels and piping are often so ductile

under operating conditions that all or part of the ligament can undergo fUlly plastic
deformation prior to fracture initiation. Hence it is of practical significance to assure
accuracy of the line-spring model in the fUlly plastic regime. The line-spring model employs
a convex yield surface <I>(Qi; a, t; To) = 0 in the generalized force space. An explicit approxi­
mate form for the yield surface under conditions of predominant tension was provided by
Rice (1972a) and by Kim et al. (1994a), and another explicit form in a load state of
predominant bending was discussed by Shiratori and Miyoshi (1980) and by White et al.
(1983).

Applying the upper bound theorem to a kinematically admissible flow field consisting
of a single circular are, Rice (1972a) constructed an upper bound yield surface graphically.
Then he approximated the upper bound yield surface with the following explicit elliptical
equation

l(N/2TO /)-0.3J2 lM+Na/2J2<DR = + 9 - 1 = 0
0.7 2To P

(13)

where To is the flow strength in shear, a is the crack length and I is the remaining ligament
(t = a + /). This elliptical equation was used in the PW line-spring model. When a positive
bending moment, superposed with an axial force of a magnitude less than 0.55' (2To/), is
applied to the SEC specimen, the Green and Hundy (GH) field (1956) for pure bending
can be modified to produce a slip-line field for the combined load state. Adding a com­
pressive force region to the GH field, White et al. (1983) derived the following yield surface:

M N (N)2<DMGH = -2 - ~(0.26-a/l)+0.37 21 -0.63 = O.
Tol ~To To

(14)

The exact yield surface of the plane strain uncracked strip of thickness t in rigid/plastic
material, subject to combined tension and bending, is given by Prager (1959) :

(15)

1

If the thickness t in (15) is replaced by the ligament I of the SEC specimen, and the moment
Min (15) is re-interpreted as the moment about mid-ligament rather than mid-specimen,
this yield surface becomes a lower bound yield surface for the SEC specimen.
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The yield surfaces defined by egns (13) and (14) are for cracks sufficiently deep that
yielding is confined to the ligament. As studied by Green (1956), Ewing (1968) and Mat­
soukas et at. (1986), the slip-line field of the shallow crack configuration in predominant
bending extends to the front surface. Good detection techniques allow shallow cracks to
be the ones most encountered in engineering practice. In accidental overloads due to
earthquakes, collisions and ship groundings, shallow cracks are also the ones most likely
to reach full plasticity before crack extension. With this background, Lee and Parks (1993)
developed a comprehensive set of accurate yield surfaces for plane strain SEC specimens.
Consider a small geometry change continuum finite element model of the plane strain SEC
specimen composed of an isotropic elastic-perfectly plastic material. Imposing sufficiently
large magnitudes of 6 and 8 in fixed ratio on the top edge of their finite element models,
they determined the limiting force and moment, and the vector (6, 8) provided the cor­
responding yield surface normal vector at that limiting load point.

Figure 3 shows combined tension and bending yield surfaces in the generalized force
space. The coordinates are normalized with shear flow strength To and thickness t of the
SEC specimen such that QI = Q,/2Tot; Q2 = Q21Tot2, and the corresponding normalized
(plastic) displacements are ql = qdt; q2 = q2/2. With this normalization, the plastic dis­
sipation rate per unit length can be expressed as WP = Qki/k = (2T ot2)QJik- Circled points
are data numerically obtained from continuum finite element limit analyses (Lee and Parks,
1993). To satisfy convexity of the yield surface, solid lines were obtained by interpolating
the sets ofcircled data points with a monotonic interpolant (Gregory and Debourgo, 1982).
Subsequently, at fixed alt, the values of yield surface normal and the radius for any
particular load ratio 121/122 are recovered by interpolation between tabulated alt-values.
We employ these improved yield surfaces in our elastic-plastic line-spring model described
in the next section.
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Fig. 3. Combined tension and bending yield surfaces in the generalized force space, the coordinates
of which are normalized with the SEC specimen thickness I and shear flow strength To. Solid lines
(Lee and Parks, 1993) were interpolated from the set of circled data points. Also shown are the
uncracked yield surface and Rice's quadratic forms (Rice. 1972a) and the modified Green and

Hundy yield surfaces (White el al.• 1983).
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Rice's quadratics (13) for predominant tension (N > 0, () ~ 0), modified GH solutions
(14) for the range of axial force, - 2r) ~ N ~ 0.55' (2r)), and the uncracked yield surface
(15) are also plotted in Fig. 3. Modified GH solutions show excellent agreement with
numerically obtained yield surfaces down to relative crack depths of aft = 0.3. For the very
short crack depth a! t = 0.1, Rice's quadratics and the modified GH yield surface surpass the
uncracked yield surface, which must include all true cracked yield surfaces. In application,
accurate yield surfaces for a/ t-values not in the yield surface data base are obtained by
interpolation; one result is shown in Fig. 7.

2.3. Elastic-plastic line-spring
With the yield surface <1>(Qi; a, t; ro) = 0 known in the generalized force space, together

with an isotropic hardening assumption, the line-spring incremental constitutive relation
for the fully plastic region can be constructed as follows.

The total generalized displacement increments b..qi are additively decomposed into
elastic and plastic parts: b..qi = b..q~e) + b..q~P) . The elastic generalized displacement
increments b..qle) are represented in terms of the elastic compliance and the generalized force
increments b..Q/ :

(16)

When the generalized force state is on the yield surface and active plastic loading occurs,
the plastic generalized displacement increments are taken as the product of a non-negative
scalar A and the outward yield surface normal

(17)

Rewriting b..Q, and invoking the consistency condition that the force state remains on the
yield surface during plastic flow leads to the following pair ofequations, which are sufficient
to describe "non-hardening" fully plastic behavior of the line-spring:

<1>=0

(18)

(19)

where SIj (a, t) == Pi;] (a, t) represents the elastic stiffness matrix.
In case of hardening, we simply take the true stress/logarithmic plastic strain curve in

uniaxial tension as the relation between the line-spring ligament-average flow strength, (Jo,

and the ligament-average plastic strain, 8~), so that in an incremental form

(20)

The plastic material modulus hs is the slope of the true stress/logarithmic plastic strain
curve of the material in uniaxial tension.

Interpretation of the plastic work increment in two different ways associates b..8~) with
b..q:P). At the macroscopic level, the plastic work increment per unit thickness of the SEC
specimen b.. W(p) is given by

(21)

Another expression for this plastic work increment is given by the integral of the continuum
plastic work increment over the area A of the SEC specimen where plastic dissipation is
occurring
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(22)

Here the quantities (j and Ae(p) are local values of tensile equivalent stress and equivalent
plastic strain increment in the dissipation area A. Parks (1981) inferred that the active
plastic deformation area A of the deep crack would be proportional to the square of
remaining ligament 1= (t-a). Although the slip-line field of the shallow crack can extend
to the front surface, the plastic deformation area A is still proportional to the square of a
"characteristic length" ; thus we again choose the ligament I as the characteristic length,
even for shallow cracks. Then, the last integral (22) can be evaluated approximately, in
terms of (J 0 and At;;'), as

(23)

where the dimensionless scalar f, which we call the strain hardening factor, is expected to
be of order unity. On the assumption of isotropic hardening, equivalency of macroscopic
and continuum plastic work increments provides

(24)

Equations (18)-(20) and (24) represent a complete set of implicit incremental constitutive
relations for fully plastic hardening behavior of the line-spring model [see also Parks and
White (1982) for an explicit formulation in a rate form].

The value off is calibrated by comparing the single line-spring behavior to the con­
tinuum finite element solution of a plane strain initial boundary value problem having the
same dimensions, material properties and loading histories. For all continuum and line­
spring finite element input data, we used a multi-linear stress-strain curve, smoothly
approximating the experimental data of ASTM A710 Grade A steel. A parametric study
of various crack depths under diverse loading conditions showed that the simple choice
f = 0.9 enables the line-spring model to follow the continuum finite element solutions
satisfactorily. Improving the line-spring compliances by use of effective crack length, tabu­
lated yield surfaces, and a re-calibrated strain hardening factor finds its pay-off in a
better evaluation of the crack-tip deformation parameters such as J, CTOD and crack-tip
triaxiality as inferred or measured by the stress parameters Tor Q.

The crack-tip deformation intensity parameter J is taken as the sum of an elastic and
a plastic part; J = pel + J(p). The effective value of elastic pc) is estimated from (8). In the
rigid-perfectly plastic case, the increment of Pp) is the product of the generalized dis­
placement increments and the derivatives of the generalized limit loads with respect to the
ligament length (Bucci et at., 1972):

OQLim aQ~lfn
APp) = - --'-Aq{PI = 1\<1>oa I. at (25)

where the derivatives with respect to I of the generalized loads Q ~im satisfying <I> = 0 are
taken at fixed q;p). Formally, (25) is restricted to rigid-perfectly plastic applications. In
practice, however, the non-negative scalar 1\ in our formulation already accounts (in a
certain sense) for effects of strain hardening, so we continue to use (25) in hardening
applications. The resulting form of J is quite approximate, but the magnitude of J(P) rapidly
comes to dominate that of any conceivable definition of pcl, once gross plasticity prevails
(Parks, 1981).

When test specimens or structures are under elastic-plastic situations, the displacement
at any point in the body can be formally decomposed into its "linear elastic" and "plastic"
parts. In this spirit, CTOD may be taken as the sum of two terms, an elastic and a plastic
part; e5 t = e5}e) +W). This additive form is also adopted in the ASTM E 1290 standard. The

-~-
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"elastic" CTOD of a hardening material in plane strain small scale yielding condition is
given by

(26)

In ASTM E 1290, the value of d" is suggested as d" = 0.5, which is close to small geometry
change flow theory FEM results (d,,::::: 0.48) by Tracey (1976) and Shih (1981), and large
geometry change flow theory FEM results (dn ::::: 0.59) by McMeeking (1977) and Wang
(1991) for low to moderately hardening material. The plastic part of CTOD is related to
the plastic parts of the load point displacement and rotation in incremental form (Parks,
1981) as

(27)

---r--------------

where'Y. == arctan(Q\!Q2) is the polar angle in Fig. 3, and a!t is relative crack depth. For a
deeply cracked SEC specimen with slip-line fields confined to the ligament, the dimensionless
functions C; are given as C = I, C2 = 1!2 - a! t through a kinematical relation applicable
to both an upper bound field (Rice, 1972a) and the modified GH slip-line field (White et
aI., 1983). In deep crack configurations, the upper bound field is accurate for predominant
tensile loading, and the modified GH slip-line field is effective for predominant bending
loading conditions (see Fig. 3) ; thus the above values for C; hold irrespective of loading
condition. However, the values of Ci for shallow cracks are more complicated, as discussed
by Lee and Parks (1993) [see also Figs 9 and 10 and the discussion below].

3. RESULTS

After being calibrated against continuum FEM analyses ofplane strain SEC specimens,
the modified line-spring model is applied to surface cracked plates. For unconditional
stability in our numerical time integration procedure, we employed the Euler backward
formulation so that the line-spring constitutive equations are satisfied at the end of a time
increment.

3.1. Plane strain SEC specimens
Contained yielding region (<I> < 0). Assuming I'1qi are given, the nonlinear implicit

equations (4), (6), (7) and (12) are solved for Q, with Newton-Raphson iterations for
rapid convergence, and the integrals of eqn (12) are evaluated with ten-point Gaussian
integration. Global equilibrium equations of the whole structure composed of shell and
line-spring finite elements are also solved with Newton-type iterative methods (ABAQUS,
1988a) ; thus, we find the "elastic" Jacobian matrix T/ e

) == oQjoqj and send it to the main
ABAQUS program. The detailed derivation of T,/e) is given in the Appendix.

Figure 4 shows the normalized axial force vs cracked displacement of the plane strain
SEC specimen of relative crack depth a!t = 0.5 under remote pure tension (N > 0, M = 0;
M is the moment about mid-specimen). Eight-node plane strain elements with reduced
integration [element type CPE8R from the ABAQUS library (l988b)] were used for the
continuum finite element model of the SEC specimen. In the continuum finite element
solution, the uncracked displacement was subtracted from the total extension btot to obtain
the cracked displacement as a function of imposed load; be = b'o' - 2Ls' f!(N!t) , where 2Ls
is the length of the SEC specimen and e(N!t) represents the axial strain of the uncracked
plane strain specimen subject to uniform axial stress (N!t). The PW line-spring model
formulated with the actual crack length (fJ = 0), shows excellent behavior in the linear
elastic region, but gradually deviates from the continuum solution as the imposed load
increases. Among several modified line-spring solutions with fJ-values ranging from 0 to
0.26 in an increment of 0.065, the solution with fJ = 0.13 shows a good agreement with the
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Fig. 4. Normalized axial force N vs cracked displacement 15' of a plane strain SEC specimen of
relative crack depth a/I = 0.5 under pure tension (N > 0, M = 0). The modified line-spring solution

with f3 = 0.13 matches the continuum solution.

continuum solution. For the standard effective crack length form (6), Sham (1983) deter­
mined the asymptotic plastic zone size correction factor for a non-hardening material.
When modified to account for material hardening with hardening exponent n = 10, which
is employed in Fig. 4, Sham's work provides the value fJ = 0.136 (Hauf et al., 1994). Since
the limit load should be evaluated with actual crack length a, the effective crack length is
used only up to the onset of fully plastic yielding, defined by <D(Q;; a, t; Ty) = O. Figure 5
shows the normalized axial force vs cracked displacement of the plane strain SEC specimen
having relative crack depths ajt = 0.5, 0.35 and 0.2 under pure tension. Each curve is
plotted up to near the onset of fully plastic flow. Solutions (Hauf et al., 1994) based on the
standard effective crack length formulation (6) are shown for comparison. For ajt = 0.2, a

pure tension
(N)O. M=O)

1.0
o 0 0 continuum

----- prior LS (,s=0.)

0.8
..... standard aoff

(p=p(O). ,s=.13)

- current LS ,s~.13
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b a/t~.35

""-
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fig. 5. Normalized axial force N vs cracked displacement 15' of a plane strain SEC specimen under
pure tension for relative crack depths a/I = 0.5. 0.35 and 0.2. Each curve is plotted up to near the

onset of fully plastic yielding.
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solution from the standard effective crack length formulation with p = p(O) = 0.15, and
fJ = 0.13 fails to match the continuum solution at higher load levels.

Figure 6(a) shows the normalized i-integral vs cracked displacement for pure tension.
The continuum i-value was obtained from the virtual crack extension/domain integral
method (li et aI., 1985; Parks, 1977) as implemented in the ABAQUS code (1988a). The
variation in i over different domains in the continuum model was within 3%, an indication
of the overall accuracy of the calculation. The i-value of the modified line-spring in the
transition region is obtained by i = Kl (aeff)/H, and the improvement obtained by account­
ing for the effects of T-stress on aeft as per (4)-(9) is evident, especially in the shallow
cracked geometries where T-stress is inherently negative. In Fig. 6(b) the normalized i­
integral is pl,)tted against the axial force for pure tension, and again the modified line­
spring solution with fJ = 0.13 matches the continuum solution exceptionally. Figures 6(a)
and (b) illustrate that excessive elastic stiffness of the PW line-spring formulation generally
causes overestimates of i for a given imposed displacement, and underestimates of i for a
given load parameter in the intermediate scale yielding region.

Fully plastic region (<1> = 0). Within the context of the Euler backward formulation,
the elastic-plastic line-spring constitutive relations are given by the set of nonlinear implicit
equations (18)-(20) and (24). At the beginning of a time increment, estimates of Aqi are
presumed known. For given Aqi, we assume Aq~p), and find the corresponding AQi from
(18). Then, A8&') and 0"0(8&') + Ae&,») are determined from the work equivalency equation
(24) by Newton-Raphson iterations. Finally, Aq)P) and Ae&,) are corrected [by d(Aq~P») and
d(A8&,»), respectively] to satisfy the normality (17) and consistency (19) conditions. Cor­
rected values of the plastic displacement increments [= Aq~p) +d(Aq~P»)] are substituted for
assumed values of Aq~P) above, and the remaining steps are repeated until the corrections
d(Aq~P») are within specified tolerances, or equivalently, until the four implicit constitutive
equations (18)-(20) and (24) are satisfied simultaneously. Subsequently, we find the elastic­
plastic Jacobian matrix T~jP) == oQJoqj, which is used for revising the estimates of nodal
displacements Aqi in main ABAQUS [see the Appendix for details of definition and deri­
vation of njP)].

The normalized axial force vs cracked displacement curves of the plane strain SEC
specimen for various relative crack depths (alt = 0.5, 0.35 and 0.2) under remote pure

14 14

pure tension (a/t=.5) pure tension (a/t=.5)
(N)O. M=O)

12
(N)O, M~O)

12

o 0 0 continuum a 0 0 continuum

10 .--- prior LS (1l=0.) 10

- modified LS 1l=.13

----- 0.8 ? 0.8....,
N» »

b b

::::::: :::::::....,
0.6

....,
0.6>:iI ~

0.4 0.4

0.2 02

0.0 0.0
0.0 02 0.4 06 0.8 10 00 0.1 0.2 0.3

(a) E6 c /(O"yt) (b) N/(uyt)

Fig. 6. Normalized i vs cracked displacement (a), and normalized i vs axial force (b) of a plane
strain SEC specimen of relative crack depth a/t = 0.5 under pure tension. The effective i-value of

the modified line-spring in this transition region is obtained from K, (a,rr) using eqn (8) directly.
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tension are shown in Fig. 7. Three curves, the previous (PW) line-spring solution, the
modified line-spring solution and the continuum solution, are plotted for each crack depth.
The PW solutions, which are based on Rice's approximate yield surface and strain hardening
factor f = 004, tend to deviate from the continuum solutions and reach limiting loads
somewhat early. Note that Rice's quadratics underestimate limiting load values near pure
tension loading, as shown in Fig. 3, and this is reflected in Fig. 7. For the modified line­
spring model equipped with effective crack length and with more accurate tabulated yield
surfaces, parametric study of the strain hardening factor demonstrated that the constant
value of f = 0.9 generally produces acceptable agreement between continuum and line­
spring load-displacement histories, such as mid-ligament tension (N) 0, (J = 0), pure
tension (N) 0, M = 0), and pure bending (N = 0, M> 0). The nonlinearities in the
transition region are again captured by the effective crack length. The yield surface of, for
example alt = 0.35, was linearly interpolated between tabulated yield loci of alt = 0.4 and
alt = 0.3, and the validity of this simple linear interpolation between crack depths is
corroborated by the accuracy of the load-displacement curve for alt = 0.35.

Figure 8 shows the normalized i-integral vs the generalized force for the relative crack
depths alt = 0.5 and 0.2 under mid-ligament tension loading. For a deep crack of alt = 0.5,
three solutions fall on almost the same locus, while for the shallow crack of alt = 0.2, only
the modified line-spring solution traces the path of the continuum solution closely, and the
improvement is noteworthy. Figures 7 and 8 indicate that the effective crack length cor­
rection parameter f3 = 0.13 and the re-calibrated strain hardening factor f = 0.9 might be
accepted for a range of relative crack depths and load histories, at least within the scope of
the adopted formulation for moderate strain hardening, n = 10.

Plastic CTOD. Investigating the upper bound flow field, modified GH slip-line field,
and some general features of the yield surfaces, Lee and Parks (1993) took C j as equal to
unity, then recast eqn (27) in the form

[ (
I a) (tM){Pl)]ll(j(p) = llc5(P) I + Lo' - - - . --. .

t • 2 t ll(j(p) (28)

Here Lz = Iz(alt, t/J) = Cz/(l/2-a/t), t/J(:x) = arctan(211c5{Plltll(J(Pl) is the angle between the

pure tension
(N)O. M=O)

0000 continuum

-- -- prior I.S
(Il~O.; f=0.4)

0.5

1.0

- modified LS
Il~O.13; 1=0.9

Fig. 7. Normalized axial force N vs cracked displacement b' of plane strain SEC specimens of
relative crack depths aj t = 0.5, 0.35 and 0.2 under pure tension (N > 0, M = 0).

SAS 32: 16-1

-~_.



2406

16

14

12

10

or
>-

b 8
::::::...,
"" 6

4

H. Lee and D. M. Parks

mid-ligament tension
(N)O, 0-=0)

o 0 0 continuum
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Fig. 8. Normalized J vs axial force N for mid-ligament tension (N > 0, (J = 0) of plane strain SEC
specimens of relative crack depths ail = 0.5 and 0.2. The ratio of specimen length to thickness is
2L,/t = 6. The improvement in the solution of the shallow crack (a/t = 0.2) is due to accurate

tabulated yield surfaces and the newly calibrated value off = 0.9.

yield surface normal and the horizontal axis in the normalized force space of Fig. 3, and
a == arctan(Q,/Qz) again.

Figure 9 shows the function L z plotted against the ratio of plastic displacement
increments, from mid-ligament tension to its mirror image of mid-ligament compression
(Lee and Parks, 1993). For sufficiently deep cracks, alt ~ 0.4. L z = 1 throughout the whole
range, while for shallow cracks (alt ~ 0.3), L z shows a 'V'-shape variation, indicating a
strong interaction between crack-tip and front surface. The plastic CTOD increments in
the PW line-spring model are calculated based on L z = 1 for all crack depths. As is clear
from Fig. 9, however, using constant L z = 1is not advisable when L z « 1. Thus, L z = Lialt,
lj;) was incorporated into our line-spring model for a better estimation of the plastic CTOD.

(Lee & Parks, 1993)
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".S 0.6...,
ctl...,
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M P j(t-,19")=O.5tan't
Fig. 9. Crack-tip opening displacement function L, [see (28)] vs ratio of load point plastic dis­
placement increments for various relative crack depths [from Lee and Parks (1993)1. Function

L,(a/I, i/J) represents the degree of negative relative rotation of the crack flank.
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The normalized CTOD vs the generalized force for the relative crack depths a/t = 0.5
and 0.2 under pure tension are plotted in Fig. 10. CTOD in the continuum model is defined
as the opening distance between the intercept of the two 45' lines, drawn back from the tip
in the deformed configuration (Tracey, 1976), and this operational definition was applied
to continuum FEM solutions to obtain corresponding values of CTOD. Both the PW and
the modified line-spring solutions show fairly good agreement with the continuum solutions
for the deep crack of aft = 0.5. For the shallow crack of a/t = 0.2, the PW model con­
siderably underestimates the CTOD value in the general yielding region, and attains an
excessive limit load (vertical line). On the other hand, the modified line-spring model
accurately tracks the continuum solutions up to the limit load, and consequently shows
substantial improvement.

3.2. Surface cracked plates
i-distributions along crack fi'onts. The surface cracked plate which was analysed is

schematically shown in Fig. 1. The plate has a length 2h, a width 2b and a thickness t, with
h/t = 16 and h/t = 8. The semi-elliptical crack in the center of the plate has a surface length
2c and a maximum through-thickness penetration a. The parametric angle ¢ locates position
along the semi-elliptical crack front. Eight-node shell elements with reduced integration
[element type S8R from the ABAQUS library (1988b)] were used to model one quarter of
the plate in Fig. I. To secure an adequate elastic-plastic compliance in response to the
remote bending moment, eleven Simpson's rule integration points across the thickness of
the shell were used. Ten three-node second order line-spring elements assuming a symmetry
plane cross the spring were placed to represent the cracked plane.

Figures 11 (a) and (b) show the normalized i-distribution along the crack front of the
surface cracked plate having a/t = 0.6 and a/c = 0.24 under a remote tension and a remote
bending moment, respectively. Open circles represent 3-D continuum finite element solu­
tions (Wang, 1(91) performed with the same stress-strain model of ASTM A710 Grade A
steel, and solid lines are the current line-spring solutions. For the remote tension case
(<5 x > 0, OJ = 0), the load level was defined as the ratio of remote displacement to the
displacement at general yielding of the uncracked cross section, i.e. goc == E' <5

x /(2h(Jy)' For
remote bending (W > 0, N r = 0), the load level was measured by the ratio of remote
moment per unit width to the moment per unit width at general yielding of the uncracked
cross section, or If == M f /((Jyt2/4).

15

pure tension

(N)O. M~O)

o 0 0 continuum

prior L5
(fJ~O.; f~O.4)

- modified LS
fl~O.13; f~O.9

02 ~4 ~6 ~B 1~ 1.2 1A

Fig. 10. Normalized CTOD vs axial force N for purc tcnsion (N > 0, M = 0) of plane strain SEC
specimens of relative crack depths a/I = 0.5 and 0.2. The incorporated function L, and tabulated

yield surfaces improve the shallow crack resul1s.
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(a)

(b)

Fig. II. Normalized J along the crack front of surface cracked plate under remote tension (a), and
remote bending (b) at various remote load levels. With respect to Fig. I schematic, "tension"
denotes (N~ > 0, e~ = 0), while "bending" is (MX > 0, N~ = 0). For both solutions, hit = 16 and

bit = 8.

Up to intermediate load levels (gx = 0.75 and L'D = 0.8), the modified line-spring
solutions match the 3-D continuum solutions along most of the surface crack front. Even
at fully plastic load levels (<t x = 1.0 and LX = 0.96), the agreement between the two
solutions is still quite acceptable for both loading conditions. We note that at gXJ = 1.0,
center-line CTOD ::::: 0.02l, which is near the limits of a crack mechanics approach. As the
level of applied tensile load increases, the plastic zone penetrates the ligament to reach the
back surface of the plate, and, simultaneously, gross shear banding can evolve in the plate,
passing through the intersection of the crack front with the front surface (Dodds and Read,
1990). While the former pattern of deformation is accommodated by line-spring elements,
the latter one must be accommodated by shell elements of the plate model. We did not take
special measures in our definition of the shell FEM mesh to include this in-plane shear
effect into the plate model. Near the intersection of the in-plane shear band with the ends
of the model surface crack, lack of sufficient shell mesh compliance caused a sharp drop of
line-spring estimates of J-integral values, under large scale yielding, as compared with the
continuum solutions.

Crack opening stress. When the surrounding elastic field is modeled by the first two
terms of the Williams expansion, the stress field deep inside the plastic zone is known as
modified boundary layer (MBL) solution (Larsson and Carlsson, 1973). Studies on the
MBL solution have shown that crack opening stress can be quantitatively correlated with
two parameters, J and the normalized T-stress (Beteg6n and Hancock, 1991 ; Wang, 1993).

Parks (1991) proposed that the crack opening stresses (j22 ( = (J00 at 8 = 0) in any plane
perpendicular to a 3-D crack front can be characterized by the modified boundary layer
(MBL) solution,
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Here, in the local coordinate system (Xl' X2' x 3), the Xl-X2 plane is perpendicular to the crack
front, whereas the xraxis is tangential to the crack front. The local polar coordinates (r, 8)
are in the plane of (X l-X2), and 8 = 0 when X2 = 0 and Xl > O. The stress on the left hand
side of (29) is the crack opening stress in a surface cracked plate at crack front location 4>
and normalized distance r!(J!r5y) ahead of the crack front. The right hand side of (29) is
the MBL solution at the same normalized distance (Betegon and Hancock, 1991; Wang,
1993). The small scale yielding (SSY) solution can be interpreted as a particular value of
the MBL solution at r = O. The constants Am Bnand Cndepend upon the strain hardening
exponent n of the material, and r(4)) == T(4))!r5y. The choice of normalized distance r!(J!r5y)
has little effect on the fitted constants as long as it is outside the blunting zone (Betegon
and Hancock, 1991), but suitably small compared to local uncracked ligament.

At the distance r = 2J!r5y, Wang (1993) fitted the MBL solution with (Am Bm Cn) =

(0.6168, -0.5646,0.1231) for a material having n = 10 and v = 0.3. In Fig. 12, the
center plane (4) = OC) crack opening stresses at r!(J!r5y) = 2 are plotted against Lex) ==
N OC !r5yt, for the deeply cracked plate under remote tension. Here L'" == N'" !r5yt is the
remotely applied force per unit width normalized by the membrane force at general yielding
of the uncracked cross section. HRR and SSY solutions at r!(J!r5y) = 2 are invariant; that
is, r5

HRR = 3.59r5yand r5
SSY = 3.34r5yfor the given n = 10 (Wang, 1993). Both the 3-D FEM

solution (Wang, 1993) and the LS!MBL solution, which is directly inferred from the load
history of each line-spring, show a steady decrease in magnitude as the applied load
increases. In the LS!MBL solution, the T-stress variation along the crack front T(4)) is
obtained by inserting our modified elastic-plastic line-spring solutions Qi into eqn (9). Up
to load level Lex) = 0.98, the LS!MBL solution is in distinguished agreement with 3-D FEM
solution, at least for the given crack configuration and loading type.

Figure 13 shows the distributions of the crack opening stress at r!(J!r5y) = 2, normalized
by the predicted values r5LS/MBL along the crack front for remote tensile loads ranging from
SSY to limit load. Data at 4> > 60' are not included because both the 3-D FEM solution
(Wang, 1993) and the line-spring solution are not adequately refined in this region, where
the fields vary rapidly as the crack depth changes in a precipitous manner. However, the
physical extent of crack front included in 60' < 4> < 90c is very small because of the low
aspect ratio (a!c = 0.24). For LeG < 0.925, the agreement between two solutions is better
than 98% along most of the crack front. Even at LCD = 0.980, the LS!MBL prediction is
still within 5% of the 3-D finite element solution. The results in Figs 12 and 13 demonstrate

40

HRR ¢==Oo r/(J/uy)=2
SSY

J = (J"y t/25
3.0 0

!'" t:------------------b
.......

'"'"b

2.0 a/c=O.24

a/t=O.60 0 3-D [Wang, 1991J

tension - LS/MBL(T) Solution
(6~>O. 6~=O) --- LS/Q(jJ) Solution

1.0
0.0 0.2 0.4 0.6 0.6 1.0 1.2

L:~ = Wjuyt

Fig. 12. Center plane (¢ = 0') crack opening stress at r = 2J/rJy vs remote load level LX == N°C/{fyl

for surface cracked plate under remote tension. The solid line denotes a line-spring prediction based
on calculated values of T-stress and the MBL correlation of {fn with T/{fy. The dashed line is an
approximate fully plastic estimate based on the dependence of {f22 in deeply cracked non-hardening

SEC specimen to the (evolving) tension to bending ratio within the line-spring [see (30)-(33)].
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Fig. 13. Crack opening stress normalized by LS:M BL solution, plotted along the crack front, at
various load levels for a surface cracked plate under remote tension. Cross symbols' x . represent
the crack opening stress normalized by the fully plastic line-spring estimate using Q (ji) obtained

from eqn (33).

that the simplified line-spring model successfully estimates elastic--plastic crack front fields
with a variety of constraints, in agreement with similar results by Wang (1993) based on
the PW line-spring.

Fully plastic estimate of stress triaxiality. The results in Figs 12 and 13 show that
"elastically calculated" estimates of the T-stress, in conjunction with MBL solutions,
provide very accurate estimates of stress triaxiality in surface cracked plates, even up to
fully plastic conditions. Under fully plastic ligament conditions this success comes despite
the fact that there simply is no elastic zone surrounding the crack front. This lack of formal
basis for continued use of T and MBL correlations in estimating local crack-tip stress
triaxiality has been criticized by O'Dowd and Shih (1991, 1992), who advocate a local
description of the crack-tip fields based on a reference solution, O'~EF, and the so-called Q­
stress parameter:

(30)

Here, either the HRR fields (O'~RR) or the SSY fields (O';,SY) can be chosen as O'~EF, and Q
is operationally defined as the difference between the crack-tip opening stress of the full­
field solution and O'~Y(r = 2J/O'y, 8 = 0). The parameter Q can always be extracted from
sufficiently detailed finite element solutions, but this can become cumbersome for 3-D
solutions. Under contained yielding conditions, Q is isomorphic to T/O'y, so that accurate
values of Q can be rigorously generated from T, the latter of which is easily calculated
(Nakamura and Parks, 1992; Parks, 1992; Wang and Parks, 1992). In fully plastic loading,
no comparably simple, generally applicable methods for calculating Q exist. However,
accurate estimates of fully plastic Q-values for deeply cracked plane strain SEC specimens
under combined tension and bending can be obtained in a simple manner.

Let the parameter I.l measure the bending to tension ratio applied to an edge cracked
specimen as

1'.1+ Na/2
I.l=--;;;-I-' (31 )

where (1'.1 + Na/2) is the bending moment about the mid-ligament of the SEC specimen.
The value of I.l ranges from zero for mid-ligament tension to infinity for pure bending. Kim
et al. (1994b) applied a least upper bound field consisting of slip on a circular arc, and
showed that the angle 8s at which the arc intersects the crack-tip depends on I.l. Assuming
the normal traction on the optimal arc satisfies the Hencky equilibrium equation, they
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further showed that (J" the normal stress across the optimal arc at the crack-tip, could be
expressed in terms of fl. Finally, Lee and Parks (1993) extended the partial Prandtl fields
of Du and Hancock (1991), using the hydrostatic stress (Js at angle 8s to provide the non­
hardening crack opening stress (J22 on 8s = 0 as

(32)

This simple estimate was shown to agree very well with finite element limit load solutions
over a range of fl; Fig. 14 shows the agreement. The peak value of (J22, occurring for
fl ~ 0.6, is 2.91(Jy. Thus, with this value as non-hardening reference stress, we may write

(33)

Strictly, (33) is predictive for Q in non-hardening, fully plastic deeply cracked SEC speci­
mens. O'Dowd and Shih (1992) hypothesized that the fully plastic non-hardening Q(fl)­
values could be used in applications with low levels of hardening.

Figure 15 shows crack opening stress profiles for a material having a power law
exponent n == 10, in SEC specimens subject to increasing loads at fixed values of fl. Limit
load was estimated based on the average flow stress, approximately 1.2(Jy. Dashed lines
represent load levels giving 25Jj(Jy ~ I, while dotted lines are for solutions within the fully
plastic regime <I> < O. The solid lines are for solutions satisfying both {load> limit load}
and {25Jj(Jy < I}. These solutions are most appropriate for fracture mechanics assessments
of fully plastic stress triaxiality, since conditions of gross blunting outside the realm of
crack mechanics are excluded. Also shown are HRR crack opening stress for n = 10 and
the shifted profiles based on (30), with HRR as reference and using the non-hardening fully
plastic Q (fl) estimate of (33). The estimates are remarkably accurate for the low fl-values
o:( fl :( 0.3 (tension dominant), but deteriorate somewhat as bending increases (fl = 0.4,
0.5). On the other hand, at least part of the discrepancy at larger bending is due to the
impingement of the crack tip zone into the fully plastic ligament-bending region, as evi­
denced by marked lack of "parallelism" of the HRR and continuum profiles. Indeed, the
lack of "parallel shift" in crack opening profiles under high bending leads to a pronounced
radial dependence of Q which is inconsistent with (30).

Finally, the Q(fl)-based fully plastic estimation procedure for crack opening stress was
applied to the surface cracked line-spring solutions in Figs 12 and 13. Figure 12 shows the
center-line estimates at global loads for which the central spring satisfied <I> = 0; they are
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Fig. 14. Crack opening stress (In at the crack-tip of a non-hardening, plane strain deeply cracked
SEC specimen as a function of remotely applied net section tension to bending ratio, J.l. Least upper

bound method solution from Kim et 01. (I 994b).
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Fig. 15. Crack opening stress profiles in a plane strain deeply cracked SEC specimen having alt = 0.5
for a material with n = 10. The applied bending to tension ratio is represented by the parameter Jl.
Dashed lines represent load levels giving 251/(5y ;;;, t, while dotted lines are for solutions within the
fully plastic regime <I> < O. The solid lines are for solutions satisfying both {load> limit load} and
{251/ay< l}. Also shown are HRR crack opening stress for n = 10 and the shifted profiles based
on (30), with HRR as reference and using the non-hardening fully plastic Q(Jl) estimate of (33),

represented by the circle.

slightly below the line-spring estimates based on T, except at the highest loads. The predicted
trend of the fully plastic results saturates at high load, in contrast to those based on T.
While the former trend is expected, the continuum FEM solutions do not extend to higher
loads; in any event, the local J exceeds (Jy1125 for LX > 0.95. The results in Fig. 13 shown
with the' x ' symbol give the predicted crack opening stress distribution along the surface
crack at L'" = 0.98, where all elements satisfy <D = 0, based on the line-spring fl-values and
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the fully plastic, strain hardening Q (p.) estimates presented. The overall accuracy of the
predictions exceeds that of the line-spring predictions based on T.

4. DISCUSSION

The main requirements of an analytical or computational model in fracture mechanics
are two fold: to describe the stress and deformation state at the crack front in terms of
structural and crack geometry, applied loading, and material properties, and to provide an
appropriate description of the macroscopic response ofa structure or component containing
a crack. In fulfilling these objectives, there are a range of models and analysis procedures,
of varying complexity and sophistication, which are used in engineering practice. The choice
of model in a given circumstance depends critically on the context in which the analysis is
posed. Among the important contextual issues considered are the required level of accuracy
in describing the cracked structures, and the costs associated with obtaining that level of
accuracy. In this vein, the line-spring model has proven to be an effective compromise of
accuracy and cost for analysis of part-through surface cracks in plate and shell structures.
We have improved the accuracy of the model, with negligible additional cost, in four
important ways.

First, the adoption of a novel effective crack length formulation provides substantially
improved accuracy in estimates of structural compliances and of crack front deformation
intensity (as measured by J and CTOD), for cases of contained plasticity. The new effective
crack length formulation, which accounts for the strong influences of normalized T-stress
on the size of crack-tip plastic zone (Larsson and Carlsson, 1973; Rice, 1974; Beteg6n and
Hancock, 1991; O'Dowd and Shih, 1991; Wang, 1993), greatly enhances the accuracy of
the model, especially for cases where T-stress is negative. This situation occurs for shallow
cracks loaded in tension and bending, and for deeper surface cracks loaded in tension
(Wang and Parks, 1992). Further results of the new effective crack length formulation, not
limited to combined tension and bending of SEC geometries, can be found in Hauf et al.
(1994).

In the regime of contained yielding, the T-stress is an effective correiator of the
triaxiality of the stress deep within the crack-tip plastic zone. For plane strain SEC specimens
subject to combined tension and bending, local crack opening stress profiles have been well
predicted by T-based approaches for essentially all relative crack depths, and for load levels
up to the point of impingement of fully plastic "global bending" fields into the crack-tip
region (Beteg6n and Hancock, 1991 ; Sharma et al., 1994; Wang and Parks, 1994). Indeed,
the effectiveness of a T-stress correlation of local stress triaxiality was demonstrated for
both deep and shallow surface cracked plates subject to both tension and bending by Wang
(1993) in the continuum FEM sense, and within a line-spring model, by Wang and Parks
(1992). Our results are fully consistent with those cited.

Secondly, in the fully plastic regime, accurate estimates ofstructural compliance require
accurate estimates of limit load. The recent plane strain limit load solutions (Lee and Parks,
1993) of combined tension and bending geometries have greatly improved the fully plastic
modeling of shallow cracks (ait ~ ~ 0.35). Previous limit analyses based on the deep crack
feature of deformation confined to the uncracked ligament (Rice, 1972a; Kim et al.,
1994a,b), while accurate for deep cracks, overestimate the load-carrying capacity of shallow
cracks; this feature carries over to line-spring estimates as well. Moreover, since plastic
deformation breaks back to the front surface in fully plastic shallow cracked SEC specimens,
deep crack estimates of crack tip deformation intensity (CTOD) in terms of remotely
imposed extension and rotation are gross overestimates (Lee and Parks, 1993). The current
line-spring formulation correctly accounts for these features (Figs 8 and 10).

Third, ligament-average work hardening in the fully plastic regime is addressed in the
manner proposed by Parks (1981), through the use of a dimensionless coefficient;; whose
value can be argued to be of order unity on dimensional grounds. Parks and White (1982)
calibrated the prior line-spring model based on the crude, trilinear model of stress~strain

response and suggested f= 0.4 as appropriate. Here, using the improved yield surfaces of
Lee and Parks (1993) and a more realistic stress-strain model (near power law hardening,
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with hardening exponent n = 10), we find that the simple choice f = 0.9 provides good
overall results. In general, however, the parameter f should be considered as possibly
depending on the details of the solutions, including level of strain hardening, relative crack
depth, and magnitude and type of imposed loading. Further research into these issues may
be merited.

Lastly, we addressed the issues of predicting crack-tip stress triaxiality in the fully
plastic range for deep cracked plane strain SEC specimens under combined tension and
bending, based directly on (approximate) fully plastic solutions. The crack opening stresses
of non-hardening finite element limit analyses (Lee and Parks, 1993) correlate well with an
approximate closed form expression derivable from a family of least upper bound solutions
(Kim et al., 1994b). For non-hardening line-spring applications, either of these approaches
directly provides accurate estimates of the Q-stress in terms of the imposed bending to
tension ratio for those crack front locations which are fully plastic. Following a suggestion
of O'Dowd and Shih (1992), we extended the application of non-hardening estimates of
crack tip stress triaxiality in SEC specimens to obtain the corresponding estimates for the
cases of low strain hardening. The simple procedure adopted was to shift the reference
value of peak non-hardening stress triaxiality (under dominant bending) to match the HRR
reference value for hardening. Figure] 5 shows the generally good predictions of the model
in matching fully plastic crack opening stress profiles for various bending to tension ratios.
When the procedure is applied to estimate crack opening stress in the surface cracked
plates, the Q-based fully plastic estimates are close to both continuum solutions and to
those based on the "elastically calculated" T-stress through the MBL correlation (Figs 12
and 13). There are indications that at the highest levels of plasticity, the accuracy of the
fully plastic estimates of Q exceeds that of estimates based on T and MBL correlations.

5. SUMMARY

To capture the nonlinearity of the load-displacement curve in the intermediate yielding
region, a new effective crack length formulation was introduced, and it provided smooth
transition of the compliances and deformation parameters between linear elastic and fully
plastic regions. The modified effective crack length solutions matched the continuum solu­
tion to higher fractions of limit load, and distinguished themselves from both LEFM and
standard effective crack length solutions. Accurate tabulated yield surfaces were adopted,
and together with the re-calibrated strain hardening factor f = 0.9, they enhanced the fully
plastic line-spring behavior, especially in shallow crack configurations. The effect of front
face plasticity on the plastic CTOD of shallow cracks was incorporated into the fully plastic
line-spring model by using the calibrated function L 2 • Applications to surface cracked
plate problems showed that the line-spring model can be used to predict accurately the
deformation (J, CTOD) and the wide range of crack-tip stress triaxiality along the surface
crack front fields. For a low hardening material (n = 10) under a load state below the limit
load, the line-spring element provides for direct inference of the crack-tip stress triaxiality
from (9), the T-stress, together with the MBL correlations of stress triaxiality with T. For
the fully plastic non-hardening deep crack case, the line-spring element can measure the
crack-tip constraint from (33), Q(J.l)' and this fully plastic approach can be also used for
an approximate evaluation of crack-tip constraint in a low hardening material under fully
plastic loading.
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APPENDIX

To be used for revising the estimates of nodal forces or displacements in a global model composed of shell
and line-spring finite elements, the following Jacobian matrices are found and sent to the main body of the
ABAQUS finite element program, in which global equilibrium equations are solved by Newton-type iterative
methods (ABAQUS, 1988a).

AI. Elastic Jacobian matrix T;')
We can find oqJoQ/ from eqn (12) ; then the elastic Jacobian matrix T\') == OQ,jOqi = [oq,jOQir 1 is given by

(AI)

The partial derivatives in eqn (AI) are obtained by making use of eqn (7) as

where the prime denotes differentiation with respect to a,ff or d'ff' depending on the argument in the parentheses.
From eqn (4), the partial derivative of effective crack length with respect to the generalized force is given by

T

(A4)



where
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'1,

and also, from eqn (6),

2f3 P (,) K, (a,IT, t)/a~
'12 = .

1- f3 (ep/D,) T (a,IT, t) Kf (a,rr, t)/a~

ea,r. 0.3f3 K, (aofr, t) Fi (a,IT, t)/a~

DQi I -0.3f3 K j (a,IT' t) F~ (a,IT, t) Qk/a~ .
(AS)

The complementary energy formulation in (12) provides a symmetric Jacobian matrix (AI). Shawki et al. (1989)
took an effective crack length into account in the elastic part of their deformation plasticity line-spring model for
moderately deep cracks. Adopting the value of K j = F,(a, t)Qi in the correction part, they obtained an asymmetric
elastic tangent tensor and neglected the slight asymmetry in computation. Here, we note that a simple secant
compliance formulation such as qi = P,;(a,tr, t) Qj fails to provide a symmetric Jacobian matrix, even ifK j = F,(a,tr, t)
Q, is used in the correction part of effective crack length, owing to the dependence of a,tr on Tas well as K,.

A2. Elastic-plastic Jacobian matrix Tire)
When elastic-plastic constitutive equations (18)-(20) and (24) of the line-spring element are satisfied at the

end of time increment, we can derive the elastic-plastic Jacobian T)?l.
We may rewrite the normality condition (17) as ~qlP) = A<1l., = ~£~)m<1l.i == ~£~P)ni' where m = !aj',/(Q i<1l)

from eqn (24), and n, == m<1l. j • Then, taking the total differential of eqn (18) and rearranging leads to

(A6)

where n;.k == Dn/iJQ" i5 jk is the Kronecker delta, and K = I + h,~£~P) lao. At the end of the time increment, the
corrections of the solutions d(~Q') and d(~£~)) should also satisfy the consistency condition (19) ; that is,

(A7)

Multiplying (A7) by m and using eqn (20) gives

(A8)

Taking the scalar product of ni with (A6) and introducing (A8) into the result provides

which can be rewritten as

(A9)

where

Inserting (A9) back into eqn (A6) and rearranging terms provides

(AlO)

where

Premultiplying (AIO) by Nil. I, we obtain the elastic-plastic Jacobian matrix n;") as

-r---.----- .. ---
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(All)

The Jacobian matrices are used only for revising the estimated displacement fields and have no effect on the
accuracy of the solution to global equilibrium equations. Instead, the accuracy of the solution at each increment
is affected by the value of the prescribed tolerance of force and moment, and integration operator (ABAQUS,
1988a).


